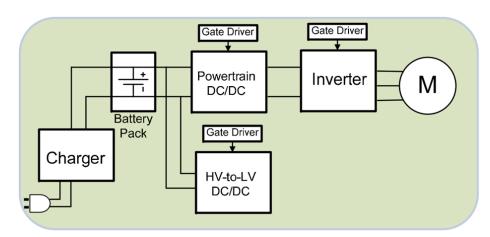


AMOGREENTECH EMI FILTER MODULE & CURRENT SENSOR

First Mover in Materials and Parts Based on Nanotechnology

The high efficiency magnetic material

- 01 Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O 4 Why AMO
- O 5 Support Organization


- 01 Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O 4 Why AMO
- **0** 5 Support Organization

High Power Traction Inverter

Main Types of Magnetic Components

Magnetic Components	Main Function	Application Location	Key Material / Characteristics
DC-Link Inductor (Choke)	Reduce DC link ripple current and smooth current	Between DC bus and inverter input	Ferrite, Nanocrystalline, Amorphous Core
Common Mode Choke (CMC)	Suppress common-mode noise and reduce EMI	Inverter output (between inverter and motor) or DC input side	Ferrite Core (MnZn, NiZn), Nanocrystalline
Output Filter Inductor	Suppress AC current ripple supplied to the motor	Inverter output stage	Ferrite, Iron Powder, Nanocrystalline, Amorphous
Transformer (Gate Drive/Isolation)	Provide isolation and power transfer for the gate driver circuit	Gate driver board	Ferrite Core (for high-frequency use)
Current Sensor Core (CT Core)	Current detection (Hall sensor or CT-based)	Inverter output stage and DC link	Silicon Steel, Ferrite
EMI Filter Inductor	Filter electromagnetic interference (EMI) on the input side	DC input section or AC mains interface	Combination of Common Mode and Differential Mode Chokes

High Power Traction Inverter

Inductor core : ARBC, AMLB, AMCU, APH, APM

- Choke coil : AMC, AMCA

Noise reduction part (=EMI Filter)

- Common mode choke core: AMFN

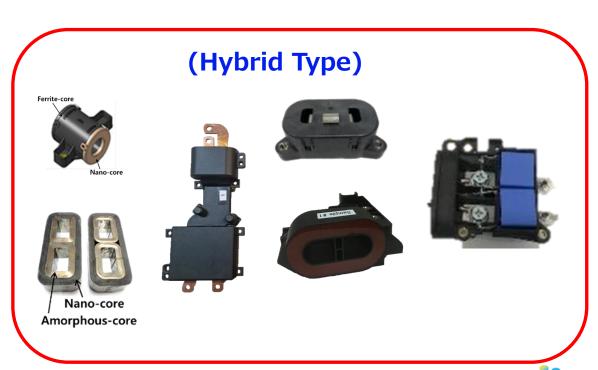
- Choke coil: AMC, AMCA

Noise filter Module (=EMI Filter)

Common mode choke : ALF

Hybrid Filter: ALC, ALCM

- **01** Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O4 Why AMO
- **0** 5 Support Organization



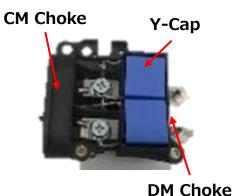
EMI Filter 2 types LINE UP

Features

- High Attenuation
- Wideband Filtering
- Extremely Compact design & Thermal stability
- Operating Temperature: -40°C to +150 °C

(General Type)

Hybrid EMI Filter


Active EMI FIlter

Nanocrystalline + Amorphous

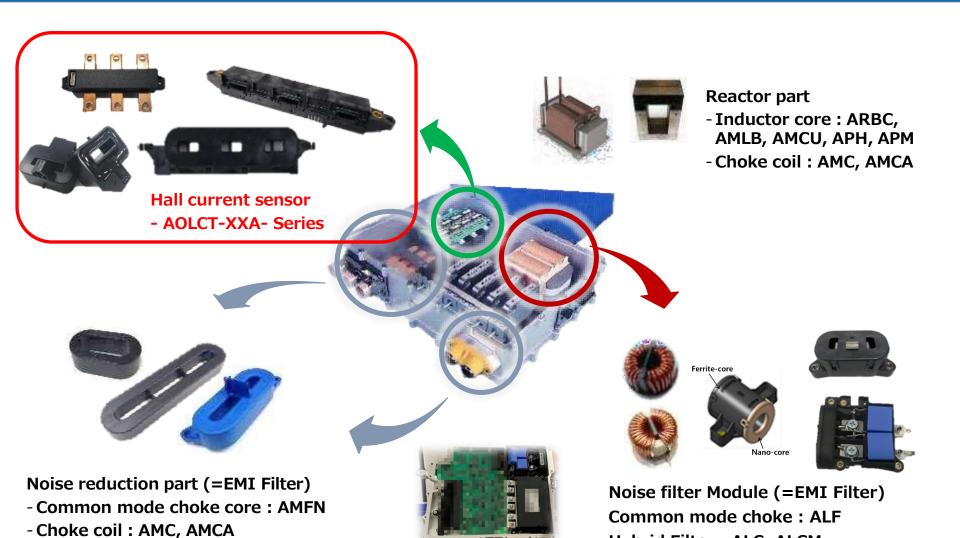
Ferrite-core

Metal + Ferrite

Nano-core

CM + DM

CM Choke + Y-Capacitor


CM Choke +
Capacitor + Busbar
+ Thermal Plastic

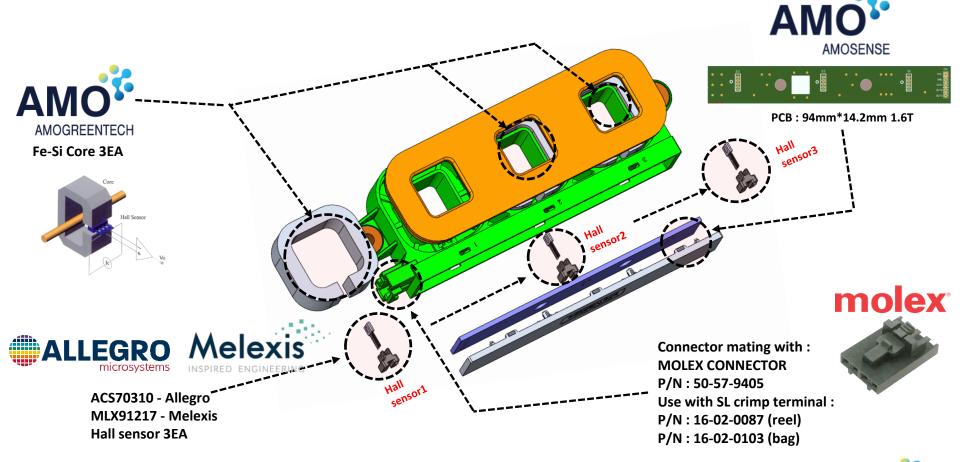
- **01** Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O 4 Why AMO
- **0** 5 Support Organization

Current Transducer

AMO

Hybrid Filter: ALC, ALCM

Current Transducer LINE UP



Parameter	AOLCT- 200A-2C-B	AOLCT- 500A-2CD-B	AOLCT- 800A-3C-B	AOLCT- 1200A-3C-B	AOLCT -1500A-3C-B
Application	Pump Control	BMS	Inverter	Inverter	Inverter
Primary current measuring range	±200A	±20A - ±500A	±800A	±1200A	±1500A
Supply voltage	+5V	+5V	+5V	+5V	+5V
Overall Accuracy	±3.5%	±2.5%	±3.5%	±3.5%	±3.5%
Output	Voltage	Voltage Dual	Voltage	Voltage	Voltage
Frequency bandwidth	30 kHz	70 Hz	40 kHz	40 kHz	40 kHz
Operating temperature	-40℃~125 ℃	-40℃~125 ℃	40℃~150 ℃	-40℃~150 ℃	-40℃~150 ℃

Current Transducer LINE UP

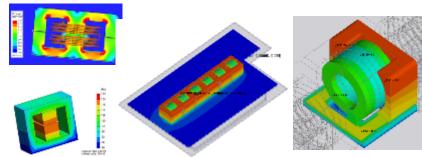
SUPPLY CHAIN MANAGEMENT

Allegro and Melexis, Hall IC suppliers, have long-standing relationships and have a stable supply chain. In addition, AMO has its own production system for magnetic cores and PCBs.

- **01** Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O 4 Why AMO
- **0** 5 Support Organization

AMO's Key Technologies

Heat Treatment Know-how (Various materials)


20,000

Ribbon Grade	Permeability, μ @100kHz	
ss	18,000	
SA	23,000	
SH	28,000	
SU	35,000	
SR (under development)	42,000	
development		

(Low perm.)

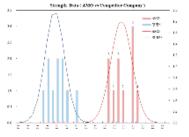
Confidential

Magnetic and thermal analysis

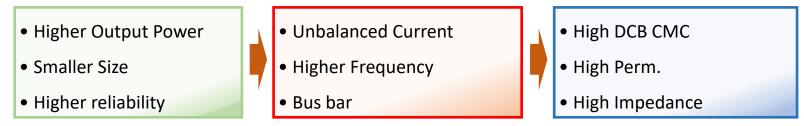
(High efficiency, heat dissipation)

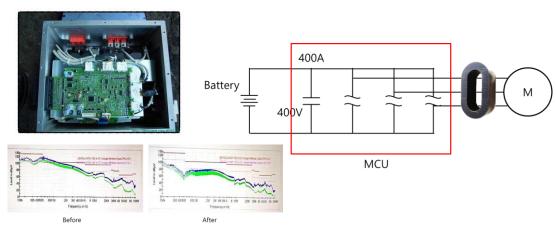
Composite Material / Function Hybrid (Product Responsiveness)

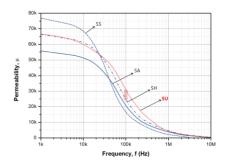
High-temperature reliable Manufacture (high-temperature solidifiers)



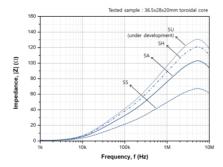
Deformation even with a small force


3.79

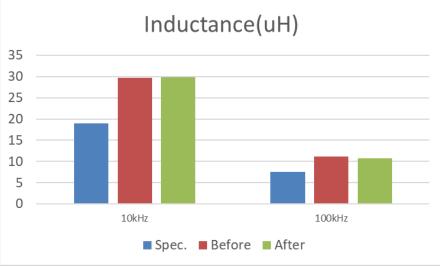

Solidified High **Strength Core**



Why AMO? 1

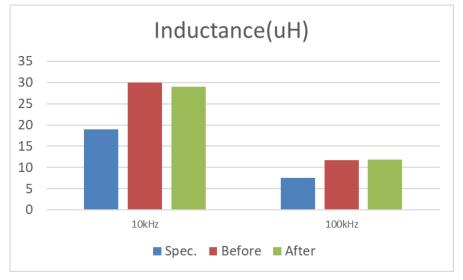

Needs and Response about EMI components for EV

- CMC response to remove EMI without saturation with unbalanced current
 SR Grade (permeability over 42,000) high permeability, high impedance
- Development of Process Technology with the same characteristics as Toroid in Track Type

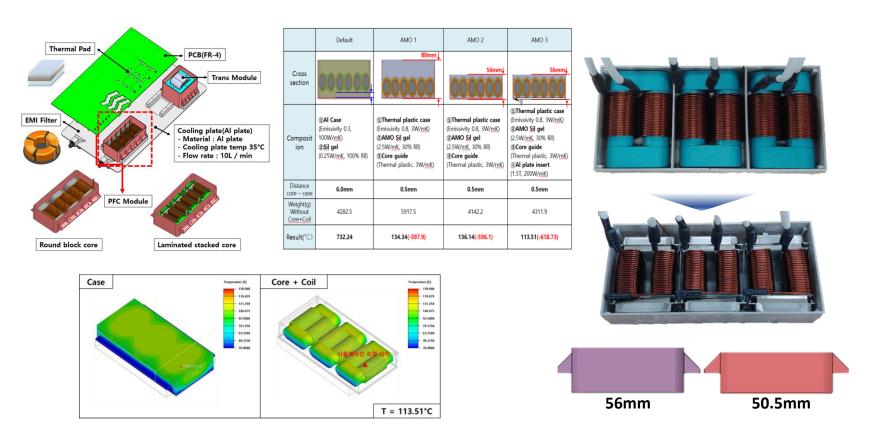


Why AMO? ②

Passed the high reliability requirements of advanced OEM


High Temperature Exposure Test

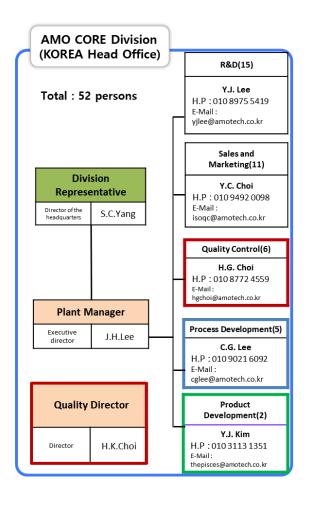
Measurement Equipment:	Inductance & Impedance at E4980AL		
2. Condition:	a) Temp: 125°C	b) Test time: 1000 hr	s
3. Spec :	① Inductance L:	>18.92 (uH)	@ $f = 10kHz$, $0.1V$
		> 7.5 (uH)	@ $f = 100kHz, 0.1V$
	② Impedance Z:	> 6.6 (Q)	@ $f = 100kHz, 0.1V$
		> 14.0 (\O)	@ $f = 1MHz$, 0.1V
		> 24.9 (\Omega)	@ $f = 10MHz$, $0.1V$
4. Evaluation Criteria:	$\ensuremath{\ensuremath{\mathfrak{D}}}$ Inductance L :	>18.92 (uH)	@ $f = 10kHz$, $0.1V$
		> 7.5 (uH)	@ $f = 100kHz, 0.1V$
	② Impedance Z:	> 6.6 (\O)	@ $f = 100kHz, 0.1V$
		> 14.0 (\O)	@ $f = 1MHz$, $0.1V$
		> 24.9 (\O)	@ $f = 10MHz$, $0.1V$

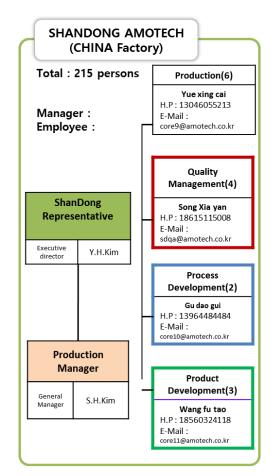

❖ Temperature Cycling Test

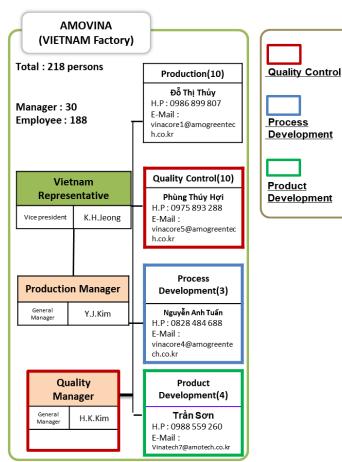
Measurement Equipment:	Inductance & Imped	lance at E4980AL	
2. Condition:	a) T emp : -40 $^{\circ}$ C \sim	120°C / 1 cycle	b) Test time: 1000 cycle
3. Spec :	① Inductance L :	>18.92 (uH)	@ f = 10kHz, 0.1V
		> 7.5 (uH)	@ f = 100kHz, 0.1V
	② Impedance Z :	> 6.6 (\Omega)	@ f = 100kHz, 0.1V
		> 14.0 (\Omega)	@ $f = 1MHz$, 0.1V
		> 24.9 (\Omega)	@ f=10MHz, 0.1V
4. Evaluation Criteria :	① Inductance L :	>18.92 (uH)	@ f = 10kHz, 0.1V
		> 7.5 (uH)	@ f = 100kHz, 0.1V
	② Impedance Z :	> 6.6 (\Omega)	@ f = 100kHz, 0.1V
		> 14.0 (\Omega)	@ $f = 1MHz, 0.1V$
		> 24.9 (\Omega)	@ $f = 10MHz, 0.1V$

Why AMO? 3

- Can be volume down 40% with Thermal plastic case than Al case because of no need clearance.
- Reduced the temperature from 734°C to 113°C by short distance between coolant and reactor.




- **01** Products Overview for EV
- **02** Hybrid EMI Filter
- **03** Current Transducer
- O 4 Why AMO
- O 5 Support Organization



Support Organization

3 Way Support System

Thank you